欧宝体育登录

欢迎访问中天和官网!

专注智能人行通道闸安全出入

全国咨询热线180-2916-7287

动力电池行业应用

联系大家

全国咨询热线:180-2916-7287

企业名称:深圳市中天和自动化设备有限企业
电话:0769-22333815
传真:0769-22333825
手机:吴先生:158-0755-7122
邮箱:
szzhongtian2008@163.com
地址:东莞东城街道伟丰路5号劲胜工业园

中天和自动化:动力电池行业报告之降成本路径降成本路径之二

文章来源: 深圳市中天和自动化设备有限企业 人气:1732发表时间:2017-11-16 11:46:06【】

中天和自动化:动力电池行业报告之降成本路径降成本路径之二

工艺改进见成效,比能量缓步提高

  笔者认为动力电池能够持续降成本的关键因素在于其类似于半导体,存在电池摩尔定律,以比能量的持续提高来实现单位Wh成本的不断下降。目前来看动力电池系统能量密度提升空间主要来自高镍三元NCMNCA的普及应用。未来动力电池比能量将主要从电池的物理性能与化学性能两方面着手提高,物理性能方面主要从材料轻量化、相互之间的搭配衔接突破,化学性能则主要通过新型材料的试用以实现电池电化学性能的佳状态。

  物理方法:工艺改进仍有空间。

  电芯环节:

  圆柱路线目前成本低,主要通过186502070021700等大容量单体切换实现进一步降本;软包路线成本高,主要通过规模化生产降成本以及改进工艺提升能量密度;方型路线主要通过大容量与铝壳轻量化实现降成本,潜在降本空间在三类封装路线中大。

  PACK环节:目前的重点突破环节,主要通过提升成组效率提升系统比能量,产业目标为由目前65%水平提升至85%,对应30%比能量提升空间。

  化学方法:提升正极材料性能为关键。

  正极材料:高镍NCM材料与NCA材料,高比能量的正极材料能够大大减少负极、隔膜与电解液等材料的用量。

  负极材料:硅碳负极替代切换。

  隔膜:薄型化隔膜。

  电解液:新型电解液LiFSI

  4.1物理方法:工艺改进仍有空间

  4.1.1电芯环节:轻量化+大容量

  电芯封装方式按软包、方形与圆柱分,成本也有所区别。其中,圆柱低,软包高。主流大厂中CATL与比亚迪走方形路线,力神、比克走圆柱路线,国轩高科同时走方形与圆柱路线,同时CATL也在积极拓展软包路线。

  圆柱路线:大容量电芯

  圆形锂电池是指圆柱型锂电池,早的圆柱形锂电池是由日本SONY企业于1992年发明的18650锂电池,因为18650圆柱型锂电池的历史相当悠久,所以市场的普及率非常高,圆柱型锂电池采用相当成熟的卷绕工艺,自动化程度高,产品传品质稳定,成本相对较低。

  圆柱的优点包括:1)结构成熟,产业化程度高,且只有卷绕这一条技术路线,不用纠结其他方法;2)设备自动化程度高,一致性高;3)结构稳定,可以支撑高能量密度材料使用;4)应用范围广,产品消耗渠道丰富,整体成本有优势。

动力电池生产厂家

  同时,其缺点也包括:1)高温升、充电倍率是普遍诟病;2)循环次数上限在1000多次,使用寿命较短,应用场景局限在中低端。

  降成本方向:做大单体电芯。特斯拉已经Model3中用20700替代18650电芯,20700电池增加的尺寸大概为10%,而体积和能量储存确是186501.33倍。根据特斯拉的估计,在达到与18650同样的良率和产能后,20700能带来能量密度增加3-4%,同时实现成本下降5-10%

  软包路线:规模化生产

  软包电池,又称聚合物锂电池,是使用高分子胶态或固态电解质的类方型电池,它们的制作工艺相似度很高,多用于手机、平板等高端3C产品上,因为高分子电解质全凭人工合成,所以成本较高,目前应用到动力电池上,还没有成本优势。软包锂电池所用的关键材料正极材料、负极材料及隔膜与传统的钢壳、铝壳锂电池之间的区别不大,大的不同之处在于软包装材料(铝塑复合膜)

  软包电池的优势主要在于安全性能好。软包电池的优点:1)安全性:在结构上采用铝塑膜包装,发生安全问题时,软包电池一般会鼓气裂开,而不像钢壳或铝壳电芯那样发生爆炸;2)重量轻,软包电池重量较同等容量的钢壳锂电池轻40%,较铝壳锂电池轻20%;3)内阻小,软包电池的内阻较锂电池小,可以极大的降低电池的自耗电;4)循环性能好,软包电池的循环寿命更长,100次循环衰减比铝壳少4%~7%;5)设计灵活,外形可变任意形状,可以更薄,可根据客户的需求定制,开发新的电芯型号。

  软包电池的不足之处是一致性较差,成本较高,容易发生漏液。未来成本下降主要通过规模化生产解决,漏液则可以通过提升铝塑膜质量来解决。

  方形路线:大尺寸与铝壳轻量化

  方形锂电池通常是指铝壳或钢壳方形电池,由于结构较为简单、能量密度较高,在国内普及率很高。方形硬壳电池壳体多为铝合金、不锈钢等材料,内部采用卷绕式或叠片式工艺,对电芯的保护作用优于于铝塑膜电池(即软包),电芯安全性相对圆柱型电池也有了较大改善。

  铝壳轻量化与统一规格是未来发展重点。锂电池铝壳在钢壳基础上发展而来,与钢壳相比,轻重量和安全性以及由此而来的性能优点,使铝壳成为锂电池外壳的主流。锂电池铝壳目前还在向高硬度和轻重量的技术方向发展,间接提升比能量。此外,由于方形锂电池可以根据产品的尺寸进行定制化生产,所以市场上有成千上万种型号,而正因为型号太多,工艺很难统一,未来成本下降还需要方形路线实现型号上的统一。

  方形路线在通过增大尺寸降成本的空间大于圆柱路线。美国卡内基梅隆大学的一项研究分析了圆柱形电池和方形电池的成本情况,发现在目前的技术水平下,圆柱形进一步降低成本的空间很小,通过提升圆柱形电池的尺寸和增加电极厚度的方式来降低成本已经收效甚微,而方形电池则有很大的潜力去降低锂离子电池的成本,因此未来电芯封装环节成本快速下降的机会很可能会出现在方形领域。

  4.1.2 PACK环节:提升成组效率

  电池PACK系统利用机械结构将众多单个电芯通过串并联的连接起来,并考虑系统机械强度、热管理、BMS匹配等问题。PACK是衔接整车、电池、BMS的纽带,而BMS则是动力电池组的核心技术,是电池PACK厂的核心竞争力,也是整车企业为关注的环节。

  PACK环节的成组效率是提升系统比能量的关键。同样150Wh/kg级别的电芯,65%85%成组效率下系统比能量分别为97.5Wh/kg127.5Wh/kg,前者是目前国内的平均水平,而后者是工信部拟定到2020年的目标。成组效率从65%提至85%对应30%以上的系统比能量提升与较大幅度的成本下降,在各条路径中显得尤为关键。PACK环节成组效率提升主要有以下方法:

  1)提升集成效率。通过去除赘余组件以及关联组件的集成来大限度地减少组件数量来提高集成效率。2)减重,采用轻量化的材料和设计。3)电池包与底盘一体化。PACK体系经历了第一代的T字或者工字型,再到第二代的土字型和田字形,目前已经来到代的一体化平台,国际一线的特斯拉与大众已经在这么做。一体化平台的好处是把部分电池包的承重转移到底盘上,从而实现轻量化。

  大众的MEB平台是其电池组未来实现成本大幅下降的关键。以大众为例,大众的针对电动车专属研发的MEB(MEBElectrictoolkit)平台是以大众目前的MQB平台为基础,适用于电动车的全新的模块化平台。MEB平台的构架是由底部的电池组而展开,打造更长的轴距和更短的前后悬,营造出更大的内部空间,从AC级全系列乘用车或轻型商用车都可基于该平台打造。电池组PACKBMS设计也根据平台打造,根据不同车型仅需要做一定的修缮与升级,设计与研发成本被大化的摊薄。

  未来国内车企自主搭建PACK产线或由电池企业深度集成是趋势

  目前国内的PACK产业是整车厂、电池厂、独立方三足鼎立,且PACK企业之间水平差距很大,不少PACK企业的技术水平都还仅仅停留在简单的电芯串并联上,无法实现结合整车设计来进行PACK设计和组装,真正能达到下游整车厂商需求的优质PACK厂商屈指可数。

  未来PACK将以整车企业主导。我国电动汽车市场未来一定是以乘用车为主要驱动,而乘用车电池PACK远比商用车复杂,需要大量研发投入。电池企业技术储备主要集中于电池本身的研发,在PACK体系的关键环节如BMS、热管理等不具备较强实力。因此,未来的格局将是整车企业主导,方PACK企业凭借专业能力也能得到一定空间,但仍然需要依附于整车企业或产业联盟。

  4.2化学方法:提升正极材料性能为关键

  相比物理改进,动力电池的关键性突破仍然大概率要从提升电池电热化学性能着手,通过新型的电池材料以及相互间的搭配、工艺的改进实现能量密度的进一步提升。而本土企业在未来几年内研发与产业化的路径也非常清晰,就是三元高镍NCM电池与NCA电池。

  本土三元正在加速实现高比能三元电池量产。以本土高比能电池的代表企业比克电池为例,其16年三元出货量0.9GWh,在本土企业中位列第2,仅次于CATL,其商业规划具备一定代表性。根据其规划,比克的NCMNCA电池量产计划齐头并进,目前能量密度达248WH/KGNCA电池已实现量产,而下一代285WH/KGNCA电池将于年内量产。就能量密度来看,已经达到特斯拉与松下水准。

  4.2.1正极材料:高镍NCM材料与NCA材料

  正极材料是电池能量的短板,提高正极材料比容量是提高电池能量密度的佳方式,未来高比容量的NCA和高镍NCM是大势所趋。正极材料的比容量一般为100-200mAh/g,而石墨负极材料的比容量高达400mAh/g,所以电池中负极和电解液等一般采用冗余配置,电池的终能量密度由正极材料决定。采用高容量的正极材料,能够带来负极、隔膜、电解液用量的大幅减少,电池终能量密度的提升幅度远大于正极材料比容量提高的幅度。所以采用高容量的正极材料对于减轻电池重量,提高电动车的续航性能具有重要意义。

  本土正极材料正在加速实现高镍三元正极材料量产。目前国内NCM111NCM523型三元正极材料产品相对成熟,而622NCM2016年开始逐步在部分动力电池企业中推广,未来将逐步拓展至811NCM以及NCA材料。以材料龙头杉杉股份为例,企业现有三元材料以NCM532NCM523NCM622为主,目前正在积极推进高镍三元产线,在建产能包括宁乡二期1万吨NCM622产能,预计2017年年底投产,以及宁夏5000NCM811产能,预计2018年投产。

  4.2.2 负极材料:硅碳负极

  硅负极的理论能量密度超其10倍,高达4200mAh/g,通过在石墨材料加入硅来提升电池能量密度已是业界公认的方向之一,但其也有技术难点,主要在于在充放电过程中会引起硅体积膨胀100%~300%。据报道特斯拉将在Model3中采用了电池新材料,特斯拉采用的松下18650电池此次在传统石墨负极材料中加入了10%的硅,其能量密度至少在550mAh/g以上

  本土进展方面,国内前几大负极材料生产厂商陆续对硅碳负极材料进行布局,深圳贝特瑞和江西紫宸已率先推出多款硅碳负极材料产品,上海杉杉正处于硅碳负极材料产业化进程中,星城石墨已将硅碳新型负极材料作为未来产品研发方向。贝特瑞研发的S1000型号硅碳负极材料的比容量更是高达1050mAh/g,尽管离硅的理论比容量4200mAh/g仍有较大差距,但已经是人造石墨负极材料比容量的3倍,性能大幅度地提高。

  4.2.3隔膜:薄型化隔膜

  隔膜工艺主要分干法与湿法两类。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。隔膜技术路线主要分为干法与湿法两种,干法成本较低但不适合大功率电池,湿法更薄能够满足大功率的要求,但是成本较贵。早的主流是干法;2015年三元产量上升后湿法使用较多,预计2020年干湿法占比50%,分别应用于中低端与高端领域。

  国产隔膜距离海外一线龙头仍有差距。日本的旭化成是隔膜行业的龙头,市占率在50%以上。过去1-2年,中国还有不少企业进入市场,但无法对龙头地位构成撼动。旭化成干法现在可量产出货的是12微米,湿法还是6-7微米。由于原料、技术、工艺与制备设备的差距,目前国产隔膜一致性较差,且厚度无法达到要求,干法20-40微米仍为主流。

  未来发展:薄型化隔膜。随着动力电池比能量快速提升,16微米、12微米甚至8微米的隔膜开始应用,而湿法工艺制成的隔膜能够达到要求。而干法隔膜随着工艺的逐步改进近几年也能够应用于低比能量的三元电池中。

  4.2.4电解液:新型电解液LiFSI

  电解质中添加LiFSI后,可提高离子导电率及电池充放电特性。比如,反复充放电300次后,1.2MLiPF6的情况下放电容量保持率会降至约60%,而在1.0MLiPF6中添加0.2MLiFSI后,保持率可超过80%。目前LiFSI已经被行业中大部分企业进行过性能测试,特别是行业排名靠前的企业,如松下、LG、SAMSUNG、SONY,以及日本的主流电解液生产商,如宇部化学、中央硝子等,同时其年使用量也处于趋势性上上升阶段。

  深圳市中天和自动化设备有限企业是一家国家认证的专业锂电池设备研发设计、生产、销售为一体的高新技术企业,企业技术力量雄厚。大家以自身对锂离子动力电池、软包电池、储能电池、数码电池生产工艺的深入了解及多年的自动化机械设备制造经验,始终为客户提供稳定、安全可靠的生产设备的需求为目标。使客户的产品达到高质量、高效率、低成本、绿色安全生产为己任。

企业的主要产品有:纯电动汽车锂电池、储能型锂电池、动力型镍氢电池、超容锂离子电池专用全自动叠片机;高倍率软包、航模专用锂电池、高端数码锂电池专用叠片机;全自动高速双工位叠片机;全自动动力电池软包工艺模切、叠片、焊接、封装生产线,全自动焊接线、全自动封装线生产;全自动动力电池铝壳工艺模切、叠片、焊接、封装生产线等系列产品,拥有多项专利。广泛应用各种叠片工艺的锂电池领域,以满足不同客户的需求。

想了解更多的锂电池设备资讯资讯或全自动叠片机相关常识请点击http://hrbsczkj.com/gongsidongtai.html

 

 

 

 

 

此文关键词:动力电池行业,动力电池行业报告

扫描二维码关注官方微信公众号

确定
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://#?bd643bc2a4c5204636a36cfe2045f1c4"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
XML 地图 | Sitemap 地图